PHYSICAL REVIEW E, VOLUME 63, 066125
Partial and random covering times in one dimension
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We study the recently introduced random walk problems of partial covering(#64d) and random cov-
ering time(RCT). We generalize the concept of first-passage time to a given setsaés by considering the
probability of visiting allm sites for the first time on th&h step. For the one-dimensional case we derive an
explicit result for the mean time needed to visisites for the first time. Using this result we are able to solve
the PCT and RCT problems exactly in one dimension.
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[. INTRODUCTION The CT problem was generalized by considering a subset
of m=N sites of the latticd8]. In the first generalization,

The random walk problem has enjoyed continual interestalled the partial covering tim@CT) problem, the PCT,, is
since the beginning of the century due to its relevance to ghe mean time taken by a random walker to visidistinct
wide range of applicationidl,2]. About a decade ago, one of sites. In the second generalization, the random covering time
the authors and collaboratof8,4] investigated the lattice (RCT) problem, the RCT, is the mean time taken by the
covering time problem oud-dimensional hypercubic lattices walker to visitm sites chosen at random. Based on a detailed
using Monte Carlo(MC) simulations. The covering time analysis of the MC data id=2 [8], it has been suggested
(CT) t. is the mean time taken by a walker to visit Blsites  that, in the thermodynamic limit, the following complemen-
of a lattice. A theory of thal-dimensional lattice CT based tarity relation between the RCT and the PCT holds:
on a formalism due to Rubin and WeiEs| has been pre-

sented 4]. However, the algebra becomes quite involved as (t,) (tp
-1
f

i ; (1.9

1-f

N grows and an exact derivation of from this approach E
appears very difficult. In one dimension the CT problem can

be related to the first-passage time problé&h For periodic
boundary conditions the exact result is given by

i.e., the reduced time needed to visit=fN sites previously
chosen at random is equal to 1 minus the reduced time
1 needed to visit the complementary numbBr—m=(1
tc=§N(N—1) (d=1), (1.9 —f)N of sites in the limitN—cc. In particular, this analysis

suggests that, id=2 andN— oo,

a result supported by direct enumeration and MC simulations

[3]. In two and higher dimensions, it has been conjectured tp_|0 for O<f<l1,
[3] on the basis of MC simulations that, foi>1, te (1 for f=1,
C, _
te~ANIN?N| 1+ —=| (d=2), (1.2) t. [0 for f=0,
InN —= 1.5
te |1 for O<f=<1.
Cq . . .
te~AgNInNN| 1+ "N (d=3), (1.3 Therefore the cost of timg, to visit a fractionf <1 of un-

selected sites is negligible compared to the cost of tifte

whereA, depends on dimensionality and lattice type but notVisit all sites, whereas the cost of tinigto visit a fraction

on the boundary conditions, where@g depends on all these f.>0 of preyipusly §e|ected sites is comparable fto the cost of
factors. The asymptotic behavior of for d=2 was con- time t. to visit all sites. In fact, for largd\ andf fixed, the
firmed in Ref.[7] by identifying it with the characteristic MC data[8] suggest

time to visit the last site in the context of the problem of

calculating the average number of distinct sites visited by the t_p~ _ In(1—1) (1.6
random walker at time for large N. For hypercubic lattices te InN ~’ '

with periodic boundary conditions, it was foufid] that A,

=1/m=0318..., A3=15%6..., A,=123... invery a behavior in agreement with analytic resuits9] for t,/t.
good agreement with MC results. Also for the mean field=1/InN. On the other hand, faf, /t; the situation is quite
(d=) case it has been shown that=1 [4,7]. complex[10]. MC studieg 8] suggest
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t, Inf* Let t(s;|s;) denote the first-passage time from sifeo site
— =~ = (1.7 sj. The mean first-passage time from sgeto site s; is
te InN given by

where forf =m/N—0, one fixesf* =ef, where Ine=1, and < 9

N* =N by using the asymptotic expression fgiin Eq. (1.2) tij=(t(sj|s))= > tF(s|si) = a—F(z;sj|si)

and matching Eq(1.7) to Montroll's result for the “one- t=1 z z=1

trap” problem[11]. For O<f<1 a good fitting of the MC (2.9

data is obtained fof* =f andN*=N"* We will assume that the random walk is directionally unbi-
In this work we consider the PCT and RCT problems in - s ; y
ased, that isp(s’|s)=p(s|s’). Then,

one dimension. We start by presenting a generalized first-
passage time problem ondadimensional lattice. Of particu- P(z;si|s)=P(zsls), F(zs|s)=F(zsl|s), t=t;.
lar interest is the investigation of the role played by dimen- = B B e Sl
sionality in these problems. Indeed, it is precisely the

simplifying feature introduced in the formalism for the one- Explicit results for the mean first-passage time, &5), for
dimensional case that allows its exact solution. Moreover, id-dimensional translationally invariant lattices can be found
is shown that our derived results, complemented by MQOn Ref.[13].

simulations, exhibit quite distinct features in comparison We now consider the first-passage time in relation to a

with the behavior discussed above for the two-dimensionagiven set ofm distinct sitess,,s,, ... ,Sy,. Let us begin by
case. introducing the conditional first-passage time probability
Fl(si|so) of arriving at sites; for the first time on theth
Il. GENERALIZED FIRST-PASSAGE TIME PROBLEM step, given that the walk started at s#ig and avoided the
sites S;, ...,Si_1,Si+1, - - - .Sp- Here F;‘(si|so) can be

_ We will consider random walks on a finite I,attice With  {hought of as the first-passage time probability in the pres-
sites and an arbitrary transition probabilipys|s’) of step- ence of absorbing defects or traps at the SES. . . S,

. : o . Sm -
ping from sites to the sites’. Let Py(s[s,) denote the site  gjnce the event “the walker is at site aftert steps, given
occupation probability, that is, the probability that the Walker,[hat the walk started at si" can be decomposed intom
Is at sites aftert steps, given that the walker started at sge disjoint events “the walker arrives at sigg for the first time

The site occupa.tlon generation function, also called the 'atbn thet'th step, given that the walk started from sitgand
tice Green function,

avoided the sitess;, ... ,Sj_1,Sj+1, ---,Sm, and subse-
o quently performed—t’ steps to reach sitg ,” we have
P(zsls0)= 2, Pi(slso)Z, (2.9 ¢ m
P(sso)= 2 2, Fl(silsoPv(sils). (27
t!=l =

plays a central role in the study of lattice random walks
[11-13,3. The first-passage time probabiliB(s|so) is the  |ntroducing the conditional first-passage time generating
probability of arriving at sites for the first time on thdth  fynction

step, given that the walker started at si§e The first-passage

time generating function is defined by ”
Fi(z;s]s0)= >, Fi(s|so)Z\, (2.8
o0 t=1
. _ t
F(zslso)= 2, Fu(s|so)" (22 e obtain
m
The generating functioR (z;s|s,) can be expressed in terms ) _ oo )
of P(z;s|sy) using a basic reasonind2] which we will P(Z'S‘|SO)_21 Fl(zs|s0)P(zsils)). (2.9

employ twice again later in this work. The event “the walker
is at sites aftert steps” can be decomposed intalisjoint ~ Using Eq.(2.4 we may relate the conditional first-passage
events “the walker first arrived at siteaftert’ steps, and generating function to the first-passage generating function:
subsequently performed-t’ steps returning to the sit®”
Thus, F(Z;Silso):FT(Z;Si|SO)+Z:i F(z;sis0)F(Z;sils)).
: 2.1

Pi(sS0) = 6t,09s,5, 2 Fu(slso)Pi_y(sls). (2.3 (210

t'=1 By lettingi=1,2, ... m in the above equation we obtain a
system ofm linear equations foF '(z;s;|s,) which can be
solved in terms of the first-passage time generating function.
Form=1 we have, trivially,

Multiplying by z' and summing ovet we find

P(z; S|SO) - 55,50

P(z;s|s) (2.4

F(z;s|sp) = F1(z;51]50) =F(z;51]50) (2.11
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and, form=2,
oo, F(2;51/S0) — F(2;55|S0) F (2;54]5;)
F'(z;s1|s0)= 5 ,
1-F(z;51|s)
F(z;55|S0) —F(z;3¢|Sg)F(Z;55|S
FT(Z;Szlso): ( 2| 0) ( 1| O) ( 2| l).

1-F(z;s4]s,)?

(2.12

The probability that the sits; is visited by the walker with-

out going through sites,, ... ,Sj_1,Sj+1, - - - ,Sm, given
that the walk started at sit®), is
fl=2, Fi(sils)=F'(Lislso). (213

Let t'(sj|s;) denote the conditional first-passage time fromtime through sites, ,s,, ..
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F(z;51,5, - - - ,Sml|So0)
m
:El F'(z;si|so)F(ziSy, - .. Si—1,Si+1, - - - SulSi).
(2.18
Using EQq.(2.12 we find, form=2,
_ F(z;s1|80) + F(z;S5]50) _
F(2751152|SO)_ 1+ F(Z,Sl|52) F(szl|sz)
(2.19

In principle it is possible to determine the generating func-
tions F(z;s1,S,, . . . ,Sm|So) recursively using Eqs(2.10
and (2.18, but the resulting expressions become very
lengthy already fom=3.

Let t(sq, .. .,Sm|So) denote the generalized first-passage
.Sy Starting from sitesy. The

site s; to sites;. The mean conditional first-passage time Mean generalized first-passage time is given by

from sites; to sites; is given by

- d
t) =(tT(sj|si)>=t21 tFtT(sjlsi)=EFT(z;sj|si)
B z=1

(2.19

The mean time to reach any ofsitess, . . . ,S,, for the first

time starting from sites, is

m

m
d
T N T rtige
t ;1 t); 121 —Fl(zsjlso) (2.19

z=1

We next define the generalized first-passage time prob-

ability Fi(s;,S,, ... ,Sm|So) that the walker visits all sites
$1,S2, - . . .Sy, for the first time on théth step, given that the
walk started at sitgy. The event “the walker visited all sites
$1,S2, - . . .Sy, for the first time on théth step, given that the
walk started at sits,” can be decomposed intom disjoint
events “the walker arrived at sitg for the first time on the
t'th step, given that the walk started at sigeand avoided
the sitess;, ...,S-1,Si+1, - - - .Sm,» and subsequently vis-
ited these sites for the first time on the-(t")th step.” Thus,

-1Sm|50)
t m
_ T
= > Fl(siso)
t'=1 i=1

XFi 4 X(51,S,, ..

Fi(s1,Ss, ..

.Smlsi). (2.16

S Si—1sSi+1 -

Introducing the generalized first-passage generating function (t(sq, ..

ee]
F(z,8:,Sy, . .. ,sm|so)=t21 Fi(S1,S5, + + . ,SmlS0)Z,

(2.17

we obtain

(t(sq, . .. ,sm|so)>=t§1 tF(Sy, - . . SmlSo)

J
= EF(z;sl, .o« SmlSo)

z=1

(2.20

Differentiating Eq.(2.10 with respect ta and settingz=1,
we find

m
tf:tOi—JZl tifl (i=12,...m), (2.22)

wheref andt" have been defined in Eq.13 and(2.14),
respectively, and we have adopted the converttjen0. The
probabilitiesf;r satisfy the system afn linear equations

(2.22

m
121 (ty—ti)f =ta—te (i=23,...m). (2.23

Equation(2.22) follows from the fact thaf, (si|s,) is a joint
probability distribution int ands;, whereas Eq(2.23 re-
sults from Eq.(2.2]). Differentiating Eq.(2.18 with respect
to z and settinggz=1, we find

. !Sm|SO)>

m
:tT+j§1 ft(s1, - Si—1.Sj41s - - - SmlS))-

(2.29

Using the result2.21) for t™ we may write
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t(Sy, ... ,Sm|S 1
G i) (t(s1 - - - SmlS0))= 5 (tort tom—tim)
m m 2
—t— fT f
foi 121 ', +JZ1 f +1(t(Sz, - - - SmlS1))
X(t(Sy, - Sj—1,Sj+1s - - SmlS])),  (2.25 +E(t(s1, - Smalsm). (3.3

For m=2 we recover the result given by E®.26). Let us
prove that the mean generalized first-passage time is given
by half the sum of the mean first-passage time between
neighboring sitesThe assumption is clearly valid fon=2.
Assuming the validity for a visit tan—1 sites we have

wheref;r are determined from the system of equatiGa22)
and(2.23. Thus we have a recursion relation for the gener-
alized mean first-passage time forsites in terms om—1
sites. Form=2 we find the simple result

1 =
(t(s1,82[80)) =5 (tor+t1pt+too), (2.26 (s, - Smls1)=(tS1, - SmafSm)
2 1 m—1
. == tiivi+Hto . 3.4
but already fom=3 the expression becomes rather lengthy: 2( izl L mt 349
(t(51,52,53/80)) = (3tTy+ 3tia+ Btha+ 2tat33+ 2tTotag Substitution into £q(3.3) gives
+ 2624 0— 3t25t 15— 3t25t 3~ Btyt2 i
13l207 Slygliz™ Slyoloz— Slyaly (t(Sq, . .. SmlSo))= > ;0 tiisittmol, (3.9

— 3ty st55— 3tTatog— 3tyath— 2tictyatss

which shows that the assertion is valid for Thus we have

proven by induction the validity of our assertion for all

— 2tyotostao— 2tigtaotos— 1Atsotatog) /24, m=2.

(2.27 _ The mean first-passage tim_e for a on_e-dimen_sion_al lattice
with periodic boundary conditions and sites[13] is given

— 2ty0t13tos— 2ty otq3t oo 2t 1ot 13t 0

where by
ti=(si—s)(N=s+s;) (5;>5). (3.6
A =2tyty3+ 2ttt 2tygtos—t],— 5~ t55.  (2.28 o b o
Let us introduce the variableg defined by
Thus, although the generalized mean first-passage time can

be written in terms of the first-passage time for arbitrary n=si;1-5-1 (i=01,...m-1),
lattices, it does not seem to be practical in the situation B
wheremis large. However, the topological constraint proper Npm=N+Sp—sp—1. 3.7

to one-dimensional lattices simplifies the formalism drasti-

cally and allows for a full solution of the problem. n; counts the number of lattice sites betweands; . ; and

satisfies

Ill. ONE-DIMENSIONAL CASE m
n=0, > ni=N-m-1. (3.9
In this section we obtain explicit results for the general- =0
ized first-passage time problem in one-dimensional lattices ) )
with periodic boundary conditions. We consider a ringhbf I terms of these counting variables H.5) for the mean
sites with coordinates=0,1,2 ... N—1. A walker steps first-passage time can be written
between nearest-neighbor sites with equal probability 1/2.

: : : 1 O
Without loss of generality we will assume thgj<s;<- - - (t(sy, . . . SmlSo))= 5 (N—1)2+m—2 n?|. (3.9
<s;,. Starting fromsy it is impossible to reach the sites i=0
Sy, ... ,Sm—1 Without passing througls; or s,. Thus flT
=0 for j=2,... m—1, and the systeni2.22 and (2.23 IV. COVERING TIMES IN ONE DIMENSION
becomes

In a lattice withN sites there are at mobt—1 sites that
T g 3.1) can be visited for the first time from a given starting site. The
bome s CT problem corresponds tm=N-—1, and can be obtained

N t from Eq. (3.9 by settingm=N-—1 andn;=0 for all i. The
—timf1+timfm=tor—tom, (B2 resultis

where we have choseés min Eq.(2.23. Solving fon"lr and

1
fI and inserting into Eq(2.25 we find te=(t(1,... N=1]0))=5N(N-1), .
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in agreement with previous studig3,6]. 0.50 '

In the PCT problem, we are interested in the expected
number of steps, taken by the walker to visih sites for the
first time. In a one-dimensional lattice with periodic bound-
ary conditions the PCT problem is equivalent to a CT prob-
lem of a lattice withm+ 1 sites. Therefore,

tp=%m(m+ 1). (4.2

t/N(N+1)
=
&

In the RCT problem then sitess, ,s,, . .. S, are chosen
at random. There is a one-to-one correspondence betwee (] ®100
the set of numbers; and n; given by Eq.(3.7). Thus the m700
expected time taken to visit ath sites for the first time is

m 1
0.40 045 0.50
tr={t(s1, - - Smls0)) =5 (N—1)2+m—i:20<n12> : m/2(m+2)

4.3

1 0.40

FIG. 1. Results of MC simulations for RCT in a ring with
f N=100 and 700 sites, with Em=200 random sites to be visited.
The scaling plot shows/N(N+1) as a function ofm/2(m+2).
The data collapsed on the straight line with slope 8.983.

where(- - -) is the mean with respect to the distribution o
n;. Due to the condition(3.8), we recognizen; to be the
occupation number of théth state ofN—m—1 particles
obeying Bose-Einstein statistics, i.e., the statistics of distrib—F
uting g=N-—m-—1 indistinguishable balls among=m+1

urns. The probability, (n) of finding n balls in an urn is
given by[14]
g+r—n-— 2) /
g—n Form=1 this result coincides with the mean times required
_ for the walker to be trapped by an absorbing difd],
with pg(n)=0 for n<O0 andn>q. To compute thekth  \yhereas fom=N—1 we recover the covering tinte given
moments by Eq. (4.1). The results of the MC simulations shown in
Fig. 1 further confirm the analytic resu#.10 for the RCT.
Let f=m/N denote the fraction of lattice sites to be vis-

inally, substitution of the resu(@.9), which is the same for
all m+1 urns, into Eq(4.3) gives

m
gtr—1 trsz(N-Fl). (4.10

q-1

Pg,r(N)= ) (4.4

o0

ky k
(MYqr= 2 n“Par(k), (49 iied. Then, from Eqsi4.1). (4.2), and(4.10 we find
it i i i t 1-f t 2
it is _convenlent to observe that, ;(n) obeys the recursion Yo, g . 419
relation te N+1" t fN+2

r—1 _o The results of MC simulations shown in Fig. 2 are in good
q+r—1 Pgr-1(n=1)=0. agreement with the above equations. Thusderl and in
(4.6)  the limit N—c« we have

pq,r(n) - pq,r(n_ 1) +

Multiplying by (n—1)* and summing oven we find m
th o, b —— for =0,
k—1 k ro1 t_:f , t—: m+2 (4.12
IZO (|>(_1)k |<n|>q,r+ q+r_1)[<nk>q,r—l_(_1)k] 1 for O<f<1.

~0 Therefore the cost of time, to visit a fractionf of unselected
- (4.7 sites is proportional to the cost of tinigto visit all sites and
increases a&?, whereas the cost of tinte to visit a fraction
f=m/N—O0 of previously selected sites is proportionalt{o
and increases as/(m+2).

which permits the computation c(fnk>q'r recursively. For
k=1 andk=2 we find

q N—m-1 48
(Mar=r=—m2g (4.9 V. CONCLUSIONS
In this work we have solved the PCT and RCT problems
(n?) _a(2g+r—1) (N-m-1)(2N—m—2) exactly in one dimension. We first generalized the notion of
ar r(r+1) (m+1)(m+2) ' first-passage time to a set wfsites for arbitrary lattices. Its

(4.9 generating function can be expressed in terms of a first-
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1.0
08
FIG. 2. Results of MC simulations for RCT in

0.6 aring withN=100(square} 300(triangles, and

1000(circles sites. The graph shows the fraction
f f of sites visited as a function of scaled tirig; .

The points to the left correspond to the PCT, the

04 solid curve being the best fit given by
(t/t,)0486=0002 The points to the right corre-
spond to the RCT. The inset shows the result for
the infinite lattice limitN— oo.

0.2

0.0

0.0 0.2 04 0.6 0.8 1.0

1,

passage generating function. As a consequence, the mekar, this result clarifies, for the one-dimensional case, the
generalized first-passage time can be written in terms ofuggestion of Weisst al. in Ref. [7] that “the single trap
mean first-passage times, although the resulting expressietpproximation is indeed a valid low-concentration limit for
becomes very complicated already for=3 sites. However, survival on an infinite lattice with a finite concentration of
in the one-dimensional case a drastic simplification occursyaps.” It changes drastically in two dimensions, in which
which allowed us to obtain a general expression for the meaggse the codt to visit a fractionf —0 of previously selected
generalized first-passage time. This result was then used ges is negligible in comparison with the costo visit all N
compute the covering timg, partial covering timé,, and  gjtes. Although it is clear that in two dimensions there are
random covering time, . In the limit of infinite lattice size, y,ch more possibilities for the walker to wander around the
the behavior of the ratiog, /t. andt, /t; as a function of the |5iice, we believe that some of the results derived in this

fraction of sitesf is shown to be quite distinct in one and two ok valid in one dimension, could not be easily anticipated
dimensions. In fact, in one dimension the cost of titpeo without a rigorous analysis of the problem.

visit a fractionf >0 of unselected sites is proportional to the
cost of timet. to visit all N sites and increases & whereas

in two dimensions this cost is negligible except for1.
Our result fort, generalizes the “one-trap” problem and
shows that in one dimension the cost to visit a fraction The authors acknowledge P. Veerman and B. Stosic for
f=m/N—O0 of previously selected sites is proportionak{o many discussions and suggestions, and partial financial sup-
and increases as/(m+ 2), thus being sensitive to the num- port from the Brazilian Government Agencies CNPq,
berm of trap sites, whereas for<0f<1, t,=t.. In particu- FINEP, and FAPESP.
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