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We study the recently introduced random walk problems of partial covering time~PCT! and random cov-
ering time~RCT!. We generalize the concept of first-passage time to a given set ofm sites by considering the
probability of visiting allm sites for the first time on thetth step. For the one-dimensional case we derive an
explicit result for the mean time needed to visitm sites for the first time. Using this result we are able to solve
the PCT and RCT problems exactly in one dimension.
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I. INTRODUCTION

The random walk problem has enjoyed continual inter
since the beginning of the century due to its relevance t
wide range of applications@1,2#. About a decade ago, one o
the authors and collaborators@3,4# investigated the lattice
covering time problem ond-dimensional hypercubic lattice
using Monte Carlo~MC! simulations. The covering time
~CT! tc is the mean time taken by a walker to visit allN sites
of a lattice. A theory of thed-dimensional lattice CT base
on a formalism due to Rubin and Weiss@5# has been pre-
sented@4#. However, the algebra becomes quite involved
N grows and an exact derivation oftc from this approach
appears very difficult. In one dimension the CT problem c
be related to the first-passage time problem@6#. For periodic
boundary conditions the exact result is given by

tc5
1

2
N~N21! ~d51!, ~1.1!

a result supported by direct enumeration and MC simulati
@3#. In two and higher dimensions, it has been conjectu
@3# on the basis of MC simulations that, forN@1,

tc'A2N ln2NS 11
C2

ln ND ~d52!, ~1.2!

tc'AdN ln NS 11
Cd

ln ND ~d>3!, ~1.3!

whereAd depends on dimensionality and lattice type but n
on the boundary conditions, whereasCd depends on all thes
factors. The asymptotic behavior oftc for d>2 was con-
firmed in Ref. @7# by identifying it with the characteristic
time to visit the last site in the context of the problem
calculating the average number of distinct sites visited by
random walker at timet for largeN. For hypercubic lattices
with periodic boundary conditions, it was found@7# that A2
51/p50.318 . . . , A351.516 . . . , A451.239 . . . in very
good agreement with MC results. Also for the mean fie
(d5`) case it has been shown thatA`51 @4,7#.
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The CT problem was generalized by considering a sub
of m<N sites of the lattice@8#. In the first generalization
called the partial covering time~PCT! problem, the PCTtp is
the mean time taken by a random walker to visitm distinct
sites. In the second generalization, the random covering t
~RCT! problem, the RCTt r is the mean time taken by th
walker to visitm sites chosen at random. Based on a deta
analysis of the MC data ind52 @8#, it has been suggeste
that, in the thermodynamic limit, the following compleme
tarity relation between the RCT and the PCT holds:

S t r

tc
D

f

↔12S tp

tc
D

12 f

; ~1.4!

i.e., the reduced time needed to visitm5 f N sites previously
chosen at random is equal to 1 minus the reduced t
needed to visit the complementary numberN2m5(1
2 f )N of sites in the limitN→`. In particular, this analysis
suggests that, ind52 andN→`,

tp

tc
5H 0 for 0< f ,1,

1 for f 51,

t r

tc
5H 0 for f 50,

1 for 0, f <1.
~1.5!

Therefore the cost of timetp to visit a fractionf ,1 of un-
selected sites is negligible compared to the cost of timetc to
visit all sites, whereas the cost of timet r to visit a fraction
f .0 of previously selected sites is comparable to the cos
time tc to visit all sites. In fact, for largeN and f fixed, the
MC data@8# suggest

tp

tc
'2

ln~12 f !

ln N
, ~1.6!

a behavior in agreement with analytic results@7,9# for tp /tc
>1/lnN. On the other hand, fort r /tc the situation is quite
complex@10#. MC studies@8# suggest
©2001 The American Physical Society25-1
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t r

tc
'11

ln f *

ln N*
, ~1.7!

where forf 5m/N→0, one fixesf * 5e f, where lne51, and
N* 5N by using the asymptotic expression fortc in Eq. ~1.2!
and matching Eq.~1.7! to Montroll’s result for the ‘‘one-
trap’’ problem @11#. For 0< f <1 a good fitting of the MC
data is obtained forf * 5 f andN* 5N1.2.

In this work we consider the PCT and RCT problems
one dimension. We start by presenting a generalized fi
passage time problem on ad-dimensional lattice. Of particu
lar interest is the investigation of the role played by dime
sionality in these problems. Indeed, it is precisely t
simplifying feature introduced in the formalism for the on
dimensional case that allows its exact solution. Moreove
is shown that our derived results, complemented by M
simulations, exhibit quite distinct features in comparis
with the behavior discussed above for the two-dimensio
case.

II. GENERALIZED FIRST-PASSAGE TIME PROBLEM

We will consider random walks on a finite lattice withN
sites and an arbitrary transition probabilityp(sus8) of step-
ping from sites to the sites8. Let Pt(sus0) denote the site
occupation probability, that is, the probability that the walk
is at sites aftert steps, given that the walker started at sites0.
The site occupation generation function, also called the
tice Green function,

P~z;sus0!5(
t50

`

Pt~sus0!zt, ~2.1!

plays a central role in the study of lattice random wa
@11–13,2#. The first-passage time probabilityFt(sus0) is the
probability of arriving at sites for the first time on thetth
step, given that the walker started at sites0. The first-passage
time generating function is defined by

F~z;sus0!5(
t51

`

Ft~sus0!zt. ~2.2!

The generating functionF(z;sus0) can be expressed in term
of P(z;sus0) using a basic reasoning@12# which we will
employ twice again later in this work. The event ‘‘the walk
is at sites after t steps’’ can be decomposed intot disjoint
events ‘‘the walker first arrived at sites after t8 steps, and
subsequently performedt2t8 steps returning to the sites.’’
Thus,

Pt~sus0!5d t,0ds,s0
1 (

t851

t

Ft8~sus0!Pt2t8~sus!. ~2.3!

Multiplying by zt and summing overt we find

F~z;sus0!5
P~z;sus0!2ds,s0

P~z;sus!
. ~2.4!
06612
t-

-

it

al

r

t-

Let t(sj usi) denote the first-passage time from sitesi to site
sj . The mean first-passage time from sitesi to site sj is
given by

t i j 5^t~sj usi !&5(
t51

`

tFt~sj usi !5
]

]z
F~z;sj usi !U

z51

.

~2.5!

We will assume that the random walk is directionally unb
ased, that is,p(s8us)5p(sus8). Then,

P~z;sj usi !5P~z;si usj !, F~z;sj usi !5F~z;si usj !, t i j 5t j i .
~2.6!

Explicit results for the mean first-passage time, Eq.~2.5!, for
d-dimensional translationally invariant lattices can be fou
in Ref. @13#.

We now consider the first-passage time in relation to
given set ofm distinct sitess1 ,s2 , . . . ,sm . Let us begin by
introducing the conditional first-passage time probabil
Ft

†(si us0) of arriving at sitesi for the first time on thetth
step, given that the walk started at sites0 and avoided the
sites s1 , . . . ,si 21 ,si 11 , . . . ,sm . Here Ft

†(si us0) can be
thought of as the first-passage time probability in the pr
ence of absorbing defects or traps at the sitess1 , . . . ,sm .
Since the event ‘‘the walker is at sitesi after t steps, given
that the walk started at sites0’’ can be decomposed intotm
disjoint events ‘‘the walker arrives at sitesj for the first time
on thet8th step, given that the walk started from sites0 and
avoided the sitess1 , . . . ,sj 21 ,sj 11 , . . . ,sm , and subse-
quently performedt2t8 steps to reach sitesi , ’’ we have

Pt~si us0!5 (
t851

t

(
j 51

m

Ft8
†

~sj us0!Pt2t8~si usj !. ~2.7!

Introducing the conditional first-passage time generat
function

F†~z;sus0!5(
t51

`

Ft
†~sus0!zt, ~2.8!

we obtain

P~z;si us0!5(
j 51

m

F†~z;sj us0!P~z;si usj !. ~2.9!

Using Eq.~2.4! we may relate the conditional first-passa
generating function to the first-passage generating functi

F~z;si us0!5F†~z;si us0!1(
j Þ i

F†~z;sj us0!F~z;si usj !.

~2.10!

By letting i 51,2, . . . ,m in the above equation we obtain
system ofm linear equations forF†(z;si us0) which can be
solved in terms of the first-passage time generating funct
For m51 we have, trivially,

F†~z;s1us0!5F~z;s1us0! ~2.11!
5-2
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and, form52,

F†~z;s1us0!5
F~z;s1us0!2F~z;s2us0!F~z;s1us2!

12F~z;s1us2!2
,

F†~z;s2us0!5
F~z;s2us0!2F~z;s1us0!F~z;s2us1!

12F~z;s1us2!2
.

~2.12!

The probability that the sitesj is visited by the walker with-
out going through sitess1 , . . . ,sj 21 ,sj 11 , . . . ,sm , given
that the walk started at sites0, is

f j
†5(

t51

`

Ft
†~sj us0!5F†~1;sj us0!. ~2.13!

Let t†(sj usi) denote the conditional first-passage time fro
site si to site sj . The mean conditional first-passage tim
from sitesi to sitesj is given by

t i j
† 5^t†~sj usi !&5(

t51

`

tFt
†~sj usi !5

]

]z
F†~z;sj usi !U

z51

.

~2.14!

The mean time to reach any ofm sitess1 , . . . ,sm for the first
time starting from sites0 is

t†5(
j 51

m

t0 j
† 5(

j 51

m
]

]z
F†~z;sj us0!U

z51

. ~2.15!

We next define the generalized first-passage time p
ability Ft(s1 ,s2 , . . . ,smus0) that the walker visits all sites
s1 ,s2 , . . . ,sm for the first time on thetth step, given that the
walk started at sites0. The event ‘‘the walker visited all site
s1 ,s2 , . . . ,sm for the first time on thetth step, given that the
walk started at sites0’’ can be decomposed intotm disjoint
events ‘‘the walker arrived at sitesi for the first time on the
t8th step, given that the walk started at sites0 and avoided
the sitess1 , . . . ,si 21 ,si 11 , . . . ,sm , and subsequently vis
ited these sites for the first time on the (t2t8)th step.’’ Thus,

Ft~s1 ,s2 , . . . ,smus0!

5 (
t851

t

(
i 51

m

Ft8
†

~si us0!

3Ft2t83~s1 ,s2 , . . . ,si 21 ,si 11 , . . . ,smusi !. ~2.16!

Introducing the generalized first-passage generating func

F~z;s1 ,s2 , . . . ,smus0!5(
t51

`

Ft~s1 ,s2 , . . . ,smus0!zt,

~2.17!

we obtain
06612
b-
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F~z;s1 ,s2 , . . . ,smus0!

5(
i 51

m

F†~z;si us0!F~z;s1 , . . . ,si 21 ,si 11 , . . . ,smusi !.

~2.18!

Using Eq.~2.12! we find, form52,

F~z;s1 ,s2us0!5FF~z;s1us0!1F~z;s2us0!

11F~z;s1us2! GF~z;s1us2!.

~2.19!

In principle it is possible to determine the generating fun
tions F(z;s1 ,s2 , . . . ,smus0) recursively using Eqs.~2.10!
and ~2.18!, but the resulting expressions become ve
lengthy already form53.

Let t(s1 , . . . ,smus0) denote the generalized first-passa
time through sitess1 ,s2 , . . . ,sm starting from sites0. The
mean generalized first-passage time is given by

^t~s1 , . . . ,smus0!&5(
t51

`

tFt~s1 , . . . ,smus0!

5
]

]z
F~z;s1 , . . . ,smus0!U

z51

.

~2.20!

Differentiating Eq.~2.10! with respect toz and settingz51,
we find

t†5t0i2(
j 51

m

ti j f j
† ~ i 51,2, . . . ,m!, ~2.21!

wheref j
† andt† have been defined in Eqs.~2.13! and~2.14!,

respectively, and we have adopted the conventiont i i 50. The
probabilitiesf j

† satisfy the system ofm linear equations

(
j 51

m

f j
†51, ~2.22!

(
j 51

m

~ t1 j2t i j ! f j
†5t012t0i ~ i 52,3, . . . ,m!. ~2.23!

Equation~2.22! follows from the fact thatFt
†(si us0) is a joint

probability distribution int and si , whereas Eq.~2.23! re-
sults from Eq.~2.21!. Differentiating Eq.~2.18! with respect
to z and settingz51, we find

^t~s1 , . . . ,smus0!&

5t†1(
j 51

m

f j
†^t~s1 , . . . ,sj 21 ,sj 11 , . . . ,smusj !&.

~2.24!

Using the result~2.21! for t† we may write
5-3
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^t~s1 , . . . ,smus0!&

5t0i2(
j 51

m

ti j f j
†1(

j 51

m

f j
†

3^t~s1 , . . . ,sj 21 ,sj 11 , . . . ,smusj !&, ~2.25!

wheref j
† are determined from the system of equations~2.22!

and ~2.23!. Thus we have a recursion relation for the gen
alized mean first-passage time form sites in terms ofm21
sites. Form52 we find the simple result

^t~s1 ,s2us0!&5
1

2
~ t011t121t20!, ~2.26!

but already form53 the expression becomes rather lengt

^t~s1 ,s2 ,s3us0!&5~3t12
3 13t13

3 13t23
3 12t10t23

2 12t12
2 t30

12t13
2 t2023t12

2 t1323t12
2 t2323t12t13

2

23t12t23
2 23t13

2 t2323t13t23
2 22t10t12t23

22t10t13t2322t12t13t2022t12t13t30

22t12t23t3022t13t20t23214t12t13t23!/2D,

~2.27!

where

D52t12t1312t12t2312t13t232t12
2 2t13

2 2t23
2 . ~2.28!

Thus, although the generalized mean first-passage time
be written in terms of the first-passage time for arbitra
lattices, it does not seem to be practical in the situat
wherem is large. However, the topological constraint prop
to one-dimensional lattices simplifies the formalism dra
cally and allows for a full solution of the problem.

III. ONE-DIMENSIONAL CASE

In this section we obtain explicit results for the gener
ized first-passage time problem in one-dimensional latti
with periodic boundary conditions. We consider a ring ofN
sites with coordinatess50,1,2, . . . ,N21. A walker steps
between nearest-neighbor sites with equal probability 1
Without loss of generality we will assume thats0,s1,•••

,sm . Starting froms0 it is impossible to reach the site
s2 , . . . ,sm21 without passing throughs1 or sm . Thus f j

†

50 for j 52, . . . ,m21, and the system~2.22! and ~2.23!
becomes

f 1
†1 f m

† 51, ~3.1!

2t1mf 1
†1t1mf m

† 5t012t0m , ~3.2!

where we have choseni 5m in Eq. ~2.23!. Solving for f 1
† and

f m
† and inserting into Eq.~2.25! we find
06612
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^t~s1 , . . . ,smus0!&5
1

2
~ t011t0m2t1m!

1 f 1
†^t~s2 , . . . ,smus1!&

1 f m
† ^t~s1 , . . . ,sm21usm!&. ~3.3!

For m52 we recover the result given by Eq.~2.26!. Let us
prove that the mean generalized first-passage time is g
by half the sum of the mean first-passage time betw
neighboring sites. The assumption is clearly valid form52.
Assuming the validity for a visit tom21 sites we have

^t~s2 , . . . ,smus1!&5^t~s1 , . . . ,sm21usm!&

5
1

2 S (
i 51

m21

t i ,i 111tm1D . ~3.4!

Substitution into Eq.~3.3! gives

^t~s1 , . . . ,smus0!&5
1

2 S (
i 50

m21

t i ,i 111tm0D , ~3.5!

which shows that the assertion is valid form. Thus we have
proven by induction the validity of our assertion for a
m>2.

The mean first-passage time for a one-dimensional lat
with periodic boundary conditions andN sites@13# is given
by

t i j 5~sj2si !~N2sj1si ! ~sj.si !. ~3.6!

Let us introduce the variablesni defined by

ni5si 112si21 ~ i 50,1, . . . ,m21!,

nm5N1s02sm21. ~3.7!

ni counts the number of lattice sites betweensi andsi 11 and
satisfies

ni>0, (
i 50

m

ni5N2m21. ~3.8!

In terms of these counting variables Eq.~3.5! for the mean
first-passage time can be written

^t~s1 , . . . ,smus0!&5
1

2 F ~N21!21m2(
i 50

m

ni
2G . ~3.9!

IV. COVERING TIMES IN ONE DIMENSION

In a lattice withN sites there are at mostN21 sites that
can be visited for the first time from a given starting site. T
CT problem corresponds tom5N21, and can be obtained
from Eq. ~3.9! by settingm5N21 andni50 for all i. The
result is

tc5^t~1, . . . ,N21u0!&5
1

2
N~N21!, ~4.1!
5-4
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in agreement with previous studies@3,6#.
In the PCT problem, we are interested in the expec

number of stepstp taken by the walker to visitm sites for the
first time. In a one-dimensional lattice with periodic boun
ary conditions the PCT problem is equivalent to a CT pro
lem of a lattice withm11 sites. Therefore,

tp5
1

2
m~m11!. ~4.2!

In the RCT problem them sitess1 ,s2 , . . . ,sm are chosen
at random. There is a one-to-one correspondence betw
the set of numberssi and ni given by Eq.~3.7!. Thus the
expected time taken to visit allm sites for the first time is

t r5 ^̂ t~s1 , . . . ,smus0!&&5
1

2 F ~N21!21m2(
i 50

m

^ni
2&G ,

~4.3!

where^•••& is the mean with respect to the distribution
ni . Due to the condition~3.8!, we recognizeni to be the
occupation number of thei th state ofN2m21 particles
obeying Bose-Einstein statistics, i.e., the statistics of dist
uting q5N2m21 indistinguishable balls amongr 5m11
urns. The probabilitypq,r(n) of finding n balls in an urn is
given by @14#

pq,r~n!5S q1r 2n22

q2n D Y S q1r 21

q21 D , ~4.4!

with pq,r(n)50 for n,0 and n.q. To compute thekth
moments

^nk&q,r5 (
n50

`

nkpq,r~k!, ~4.5!

it is convenient to observe thatpq,r(n) obeys the recursion
relation

pq,r~n!2pq,r~n21!1S r 21

q1r 21D pq,r 21~n21!50.

~4.6!

Multiplying by (n21)k and summing overn we find

(
l 50

k21 S k

l D ~21!k2 l^nl&q,r1S r 21

q1r 21D @^nk&q,r 212~21!k#

50, ~4.7!

which permits the computation of̂nk&q,r recursively. For
k51 andk52 we find

^n&q,r5
q

r
5

N2m21

m11
, ~4.8!

^n2&q,r5
q~2q1r 21!

r ~r 11!
5

~N2m21!~2N2m22!

~m11!~m12!
.

~4.9!
06612
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-Finally, substitution of the result~4.9!, which is the same for
all m11 urns, into Eq.~4.3! gives

t r5
m

2~m12!
N~N11!. ~4.10!

For m51 this result coincides with the mean times requir
for the walker to be trapped by an absorbing site@11#,
whereas form5N21 we recover the covering timetc given
by Eq. ~4.1!. The results of the MC simulations shown
Fig. 1 further confirm the analytic result~4.10! for the RCT.

Let f 5m/N denote the fraction of lattice sites to be vi
ited. Then, from Eqs.~4.1!, ~4.2!, and~4.10! we find

tp

tc
5 f 21

12 f

N11
,

t r

tc
512

2

f N12
. ~4.11!

The results of MC simulations shown in Fig. 2 are in go
agreement with the above equations. Thus ford51 and in
the limit N→` we have

tp

tc
5 f 2,

t r

tc
5H m

m12
for f 50,

1 for 0, f <1.

~4.12!

Therefore the cost of timetp to visit a fractionf of unselected
sites is proportional to the cost of timetc to visit all sites and
increases asf 2, whereas the cost of timet r to visit a fraction
f 5m/N→0 of previously selected sites is proportional totc
and increases asm/(m12).

V. CONCLUSIONS

In this work we have solved the PCT and RCT proble
exactly in one dimension. We first generalized the notion
first-passage time to a set ofm sites for arbitrary lattices. Its
generating function can be expressed in terms of a fi

FIG. 1. Results of MC simulations for RCT in a ring wit
N5100 and 700 sites, with 10<m<200 random sites to be visited
The scaling plot showst/N(N11) as a function ofm/2(m12).
The data collapsed on the straight line with slope 0.9860.03.
5-5
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FIG. 2. Results of MC simulations for RCT in
a ring withN5100~squares!, 300~triangles!, and
1000~circles! sites. The graph shows the fractio
f of sites visited as a function of scaled timet/tc .
The points to the left correspond to the PCT, t
solid curve being the best fit given b
(t/tc)

0.48660.002. The points to the right corre-
spond to the RCT. The inset shows the result
the infinite lattice limitN→`.
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passage generating function. As a consequence, the m
generalized first-passage time can be written in terms
mean first-passage times, although the resulting expres
becomes very complicated already form53 sites. However,
in the one-dimensional case a drastic simplification occ
which allowed us to obtain a general expression for the m
generalized first-passage time. This result was then use
compute the covering timetc , partial covering timetp , and
random covering timet r . In the limit of infinite lattice size,
the behavior of the ratiostp /tc andt r /tc as a function of the
fraction of sitesf is shown to be quite distinct in one and tw
dimensions. In fact, in one dimension the cost of timetp to
visit a fractionf .0 of unselected sites is proportional to th
cost of timetc to visit all N sites and increases asf 2, whereas
in two dimensions this cost is negligible except forf 51.
Our result for t r generalizes the ‘‘one-trap’’ problem an
shows that in one dimension the cost to visit a fract
f 5m/N→0 of previously selected sites is proportional totc
and increases asm/(m12), thus being sensitive to the num
ber m of trap sites, whereas for 0, f <1, t r5tc . In particu-
al

ts

06612
an
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lar, this result clarifies, for the one-dimensional case,
suggestion of Weisset al. in Ref. @7# that ‘‘the single trap
approximation is indeed a valid low-concentration limit f
survival on an infinite lattice with a finite concentration
traps.’’ It changes drastically in two dimensions, in whic
case the costt r to visit a fractionf→0 of previously selected
sites is negligible in comparison with the costtc to visit all N
sites. Although it is clear that in two dimensions there a
much more possibilities for the walker to wander around
lattice, we believe that some of the results derived in t
work, valid in one dimension, could not be easily anticipat
without a rigorous analysis of the problem.
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